Drawing Planar Graphs via Dessins d'Enfants

Kevin Bowman, Sheena Chandra, Anji Li and Amanda Llewellyn

PRiME 2013: Purdue Research in Mathematics Experience, Purdue University

$$
\text { July 21, } 2013
$$

Belyi Maps

Definition

A rational function $\beta(z)=\frac{p(z)}{q(z)}$, where $\beta: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$, is a Belyi Map if it has at most three critical values, say $\left\{\omega^{(0)}, \omega^{(1)}, \omega^{(\infty)}\right\}$.

Remarks:

- $\mathbb{P}^{1}(\mathbb{C})$ refers to the complex projective line, that is the set $\mathbb{C} \cup\{\infty\}$.
- An $\omega \in \mathbb{P}^{1}(\mathbb{C})$ is a critical value of $\beta(z)$ if $\beta(z)=\omega$ for some $\beta^{\prime}(z)=0$.

Belyi Maps

Question

Is $\beta(z)=4 z^{5}\left(1-z^{5}\right)$ a Belyi Map?
(1) Form a polynomial equation

$$
\beta(z)=\frac{\omega_{1}}{\omega_{0}} \quad \Longleftrightarrow \quad \omega_{0} 4 z^{5}\left(1-z^{5}\right)-\omega_{1}=0
$$

(2) Compute the discriminant

$$
\operatorname{disc}\left[\omega_{0} 4 z^{5}\left(1-z^{5}\right)-\omega_{1}\right]=(\text { constant }) \omega_{1}^{4} \omega_{0}^{9}\left(\omega_{1}-\omega_{0}\right)^{5}
$$

(3) Find the roots

$$
=\left\{\left.\frac{\omega_{1}}{\omega_{0}} \in \mathbb{P}^{1}(\mathbb{C}) \right\rvert\, \omega_{1}^{4} \omega_{0}^{9}\left(\omega_{1}-\omega_{0}\right)^{5}=0\right\}=\{0,1, \infty\}
$$

Answer

Yes, $\beta(z)$ is a Belyi Map with critical values $\{0,1, \infty\}$

Dessin d'Enfant

Definition

Given a Belyi map $\beta(z)=p(z) / q(z)$ we consider the preimages

$$
\begin{array}{rlrl}
B & =\text { "black" vertices } & =\beta^{-1}(0) \\
W & =\text { "white" vertices } & =\beta^{-1}(1) \\
E & =\text { edges } & & =\beta^{-1}([0,1]) \\
F & =\text { midpoints of faces } & & =\beta^{-1}(\infty)
\end{array}
$$

We define the bipartite graph $\Delta_{\beta}=(B \cup W, E)$ as the Dessin d'Enfant.
Remarks:

- A bipartite graph is a collection of vertices and edges where the vertices are placed into two disjoint sets, none of whose elements are adjacent
- Following Grothendieck, "Dessin d'Enfants" is French for "Children's Drawings"

Dessin d'Enfant

Example

$$
\beta(z)=4 z^{5}\left(1-z^{5}\right)
$$

- We found that β is a Belyi map with critical values $0,1, \infty$.
- We consider its preimages

$$
\begin{aligned}
B & =\beta^{-1}(0) \\
& =\{0\} \cup\left\{5^{t h} \text { roots of } 1\right\} \\
W & =\beta^{-1}(1) \\
& =\left\{5^{t h} \text { roots of } 1 / 2\right\} \\
F & =\beta^{-1}(\infty) \\
& =\{\infty\}
\end{aligned}
$$

Research Question

Motivating Question

Let Γ be a connected planar graph. Can we find a Belyi map $\beta(z)$ such that Γ is the Dessin d'Enfant of this map?

Remarks:

- A graph is connected if there is a path between any two points
- A graph is planar if it can be drawn without any edges crossing
- Any planar graph can be seen as a bipartite graph if we label all vertices as "black" and label all midpoints of edges as "white"

Specific Question

Given a specific web or a tree, can we explicitly find its corresponding Belyi map?

Methodology

From a graph to a bipartite graph:

1) Label graph's vertices as "black"
2) Add "white" vertices as midpoints of edges

Methodology

From a bipartite graph to a Belyi map:
3) Label "black" vertices as

$$
B=\left\{b_{1}, b_{2}, \ldots, b_{r}\right\} \subseteq \mathbb{P}^{1}(\mathbb{C})
$$

such that each point b_{k} has e_{k} edges incident.

Since we want $B=\beta^{-1}(0)$, we must have

$$
p(z)=(\text { constant }) \prod_{k=1}^{r}\left(z-b_{k}\right)^{e_{k}} \quad \text { where } \quad \beta(z)=\frac{p(z)}{q(z)}
$$

Methodology

4) Label "white" vertices as

$$
W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\} \subseteq \mathbb{P}^{1}(\mathbb{C})
$$

such that each point w_{k} has $\underline{2}$ edges incident.
Since we want $W=\beta^{-1}(1)$, we must have

$$
p(z)-q(z)=(\text { constant }) \prod_{k=1}^{n}\left(z-w_{k}\right)^{2} \quad \text { where } \quad \beta(z)=\frac{p(z)}{q(z)}
$$

5) Label midpoints of faces vertices as

$$
F=\left\{f_{1}, f_{2}, \ldots, f_{s}\right\} \subseteq \mathbb{P}^{1}(\mathbb{C})
$$

such that each point f_{k} has d_{k} edges that enclose it.
Since we want $F=\beta^{-1}(\infty)$, we must have

$$
q(z)=(\text { constant }) \prod_{k=1}^{s}\left(z-f_{k}\right)^{d_{k}}
$$

Methodology

Proposition

If there exist constants $b_{k}, w_{k}, f_{k}, p_{0}, q_{0}, r_{0} \in \mathbb{C}$ such that

$$
\underbrace{p_{0} \prod_{k=1}^{r}\left(z-b_{k}\right)^{e_{k}}}_{\text {vertices }}-\underbrace{q_{0} \prod_{k=1}^{n}\left(z-w_{k}\right)^{2}}_{\text {edges }}-\underbrace{r_{0} \prod_{k=1}^{s}\left(z-f_{k}\right)^{d_{k}}}_{\text {faces }}=0
$$

for all z, then the rational function

$$
\beta(z)=-\frac{p_{0}}{r_{0}} \frac{\prod_{k=1}^{r}\left(z-b_{k}\right)^{e_{k}}}{\prod_{k=1}^{s}\left(z-f_{k}\right)^{d_{k}}}
$$

is a Belyi map of degree

$$
2 n=\sum_{k=1}^{r} e_{k}=\sum_{k=1}^{s} d_{k} .
$$

List of Results

	Cycles
Dipoles	
Webs	Prisms
	Bipyramids
Antiprisms	
	Trapezohedrons
	Wheels
	Gyroelongated Bipyramid
	Truncated Trapezohedron
Trees	Paths Stars

Graphing: Mathematica Notebook

http://www.math.purdue.edu/~egoins/site//Dessins\ d'Enfants.html

Cycles

$$
\beta(z)=-\frac{\left(z^{n}-1\right)^{2}}{4 z^{n}}
$$

Wikipedia

Mathematica Notebook

Dipoles

$$
\beta(z)=-\frac{4 z^{n}}{\left(z^{n}-1\right)^{2}}
$$

Wikipedia

Mathematica Notebook

Prisms

$$
\beta(z)=\frac{\left(z^{2 n}+14 z^{n}+1\right)^{3}}{108 z^{n}\left(z^{n}-1\right)^{4}}
$$

Wikipedia

Mathematica Notebook

Bipyramids

$$
\beta(z)=\frac{108 z^{n}\left(z^{n}-1\right)^{4}}{\left(z^{2 n}+14 z^{n}+1\right)^{3}}
$$

Wikipedia

Mathematica Notebook

Antiprisms

$$
\beta(z)=\frac{\left(z^{2 n}+10 z^{n}-2\right)^{4}}{16\left(z^{n}-1\right)^{3}\left(2 z^{n}+1\right)^{3}}
$$

Wikipedia

Mathematica Notebook

Trapezohedron

$$
\beta(z)=\frac{16\left(z^{n}-1\right)^{3}\left(2 z^{n}+1\right)^{3}}{\left(z^{2 n}+10 z^{n}-2\right)^{4}}
$$

Wikipedia

Mathematica Notebook

Wheels

$$
\beta(z)=-\frac{64 z^{n}\left(z^{n}-1\right)^{3}}{\left(8 z^{n}+1\right)^{3}}
$$

Wikipedia

Mathematica Notebook

Gyroelongated Bipyramid

$$
\beta(z)=-\frac{1728 z^{n}\left(z^{2 n}+11 z^{n}-1\right)^{5}}{\left(z^{4 n}-228 z^{3 n}+494 z^{2 n}+228 z^{n}+1\right)^{3}}
$$

Wikipedia

Mathematica Notebook

Truncated Trapezohedron

$$
\beta(z)=-\frac{\left(z^{4 n}-228 z^{3 n}+494 z^{2 n}+228 z^{n}+1\right)^{3}}{1728 z^{n}\left(z^{2 n}+11 z^{n}-1\right)^{5}}
$$

Wikipedia

Mathematica Notebook

Paths

$$
\beta(z)=\sin ^{2}\left(n \cos ^{-1} z\right)
$$

Wikipedia
Mathematica Notebook

Stars

$$
\beta(z)=4 z^{n}\left(1-z^{n}\right)
$$

Wikipedia

Mathematica Notebook

Further Research

- Find the Belyi maps for the following:

Elongated Pyramid	Gyroelongated Pyramid
Rotunda	Elongated Bipyramid
Truncated Bipyramid	Bicupola
Birotunda	

- Create a Mathematica notebook which will generate Belyi maps for any given tree or web.
- Find a Belyi map for the Stick Figure

Acknowledgements

- The National Science Foundation (NSF) and Professor Steve Bell
- Dr. Joel Spira (Purdue BS '48, Physics)
- Andris "Andy" Zoltners (Purdue MS '69, Mathematics)
- Professor Edray Goins
- Andres Figuerola

