Drawing Planar Graphs via Dessins d'Enfants

Kevin Bowman, Sheena Chandra, Anji Li and Amanda Llewellyn

PRiME 2013: Purdue Research in Mathematics Experience, Purdue University

July 21, 2013

Belyi Maps

Definition

A rational function $\beta(z) = \frac{p(z)}{q(z)}$, where $\beta : \mathbb{P}^1(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$, is a Belyi Map if it has at most **three critical values**, say $\{\omega^{(0)}, \omega^{(1)}, \omega^{(\infty)}\}$.

Remarks:

- $\mathbb{P}^1(\mathbb{C})$ refers to the complex projective line, that is the set $\mathbb{C} \cup \{\infty\}$.
- An $\omega \in \mathbb{P}^1(\mathbb{C})$ is a critical value of $\beta(z)$ if $\beta(z) = \omega$ for some $\beta'(z) = 0$.

Belyi Maps

Question

Is
$$\beta(z) = 4z^5(1-z^5)$$
 a Belyi Map?

Form a polynomial equation

$$\beta(z) = \frac{\omega_1}{\omega_0}$$
 \iff $\omega_0 4z^5(1-z^5) - \omega_1 = 0$

Compute the discriminant

$$\mathsf{disc}\ \left[\omega_0\,4z^5(1-z^5)-\omega_1\right]=\left(\mathit{constant}\right)\,\omega_1^4\,\omega_0^9\,(\omega_1-\omega_0)^5$$

Find the roots

$$=\left\{\left.\frac{\omega_1}{\omega_0}\in\mathbb{P}^1(\mathbb{C})\right|\omega_1^4\,\omega_0^9\,(\omega_1-\omega_0)^5=0\right\}=\{0,1,\infty\}$$

Answer

Yes, $\beta(z)$ is a Belyi Map with critical values $\{0,1,\infty\}$

Dessin d'Enfant

Definition

Given a Belyi map $\beta(z) = p(z)/q(z)$ we consider the preimages

$$B=$$
 "black" vertices $=\beta^{-1}(0)$ $W=$ "white" vertices $=\beta^{-1}(1)$ $E=$ edges $=\beta^{-1}([0,1])$ $F=$ midpoints of faces $=\beta^{-1}(\infty)$

We define the bipartite graph $\Delta_{\beta} = (B \cup W, E)$ as the **Dessin d'Enfant**.

Remarks:

- A bipartite graph is a collection of vertices and edges where the vertices are placed into two disjoint sets, none of whose elements are adjacent
- Following Grothendieck, "Dessin d'Enfants" is French for "Children's Drawings"

Dessin d'Enfant

Example

$$\beta(z)=4z^5(1-z^5)$$

- We found that β is a Belyi map with critical values $0, 1, \infty$.
- We consider its preimages

$$B = \beta^{-1}(0)$$

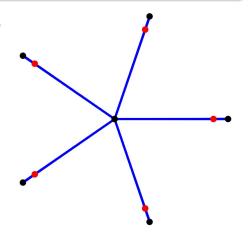
$$= \{0\} \cup \{5^{th} \text{ roots of } 1\}$$

$$W = \beta^{-1}(1)$$

$$= \{5^{th} \text{ roots of } 1/2\}$$

$$F = \beta^{-1}(\infty)$$

$$= \{\infty\}$$



Research Question

Motivating Question

Let Γ be a connected planar graph. Can we find a Belyi map $\beta(z)$ such that Γ is the Dessin d'Enfant of this map?

Remarks:

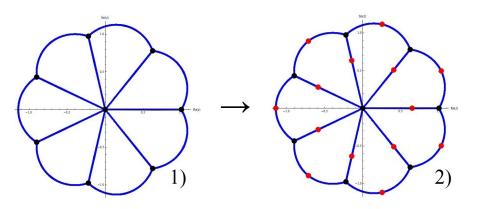
- A graph is connected if there is a path between any two points
- A graph is planar if it can be drawn without any edges crossing
- Any planar graph can be seen as a bipartite graph if we label all vertices as "black" and label all midpoints of edges as "white"

Specific Question

Given a specific web or a tree, can we explicitly find its corresponding Belyi map?

From a graph to a bipartite graph:

- 1) Label graph's vertices as "black"
- 2) Add "white" vertices as midpoints of edges

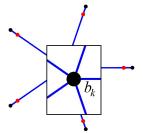


From a bipartite graph to a Belyi map:

3) Label "black" vertices as

$$B = \{b_1, b_2, ..., b_r\} \subseteq \mathbb{P}^1(\mathbb{C})$$

such that each point b_k has e_k edges incident.



Since we want $B = \beta^{-1}(0)$, we must have

$$p(z) = (constant) \prod_{k=1}^{r} (z - b_k)^{e_k}$$
 where $\beta(z) = \frac{p(z)}{q(z)}$

4) Label "white" vertices as

$$W = \{w_1, w_2, ..., w_n\} \subseteq \mathbb{P}^1(\mathbb{C})$$

such that each point w_k has $\underline{2}$ edges incident.

Since we want $W = \beta^{-1}(1)$, we must have

$$p(z) - q(z) = (constant) \prod_{k=1}^{n} (z - w_k)^2$$
 where $\beta(z) = \frac{p(z)}{q(z)}$

5) Label midpoints of faces vertices as

$$F = \{f_1, f_2, ..., f_s\} \subseteq \mathbb{P}^1(\mathbb{C})$$

such that each point f_k has d_k edges that enclose it.

Since we want $F = \beta^{-1}(\infty)$, we must have

$$q(z) = (constant) \prod_{k=1}^{s} (z - f_k)^{d_k}$$

Proposition

If there exist constants b_k , w_k , f_k , p_0 , q_0 , $r_0 \in \mathbb{C}$ such that

$$\underbrace{p_0 \prod_{k=1}^{r} (z - b_k)^{e_k}}_{\text{vertices}} - \underbrace{q_0 \prod_{k=1}^{n} (z - w_k)^2}_{\text{edges}} - \underbrace{r_0 \prod_{k=1}^{s} (z - f_k)^{d_k}}_{\text{faces}} = 0$$

for all z, then the rational function

$$\beta(z) = -\frac{p_0}{r_0} \frac{\prod_{k=1}^{r} (z - b_k)^{e_k}}{\prod_{k=1}^{s} (z - f_k)^{d_k}}$$

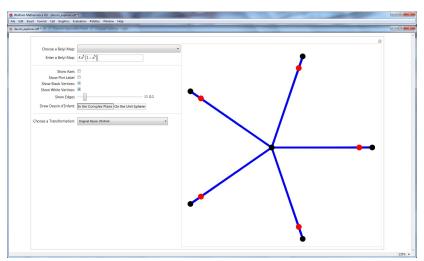
is a Belyi map of degree

$$2 n = \sum_{k=1}^{r} e_k = \sum_{k=1}^{s} d_k.$$

List of Results

Webs	Cycles Dipoles Prisms Bipyramids Antiprisms Trapezohedrons Wheels Gyroelongated Bipyramid Truncated Trapezohedron
Trees	Paths
	Stars

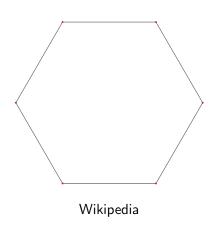
Graphing: Mathematica Notebook

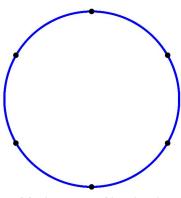


http://www.math.purdue.edu/~egoins/site//Dessins%20d'Enfants.html

Cycles

$$\beta(z) = -\frac{(z^n - 1)^2}{4z^n}$$

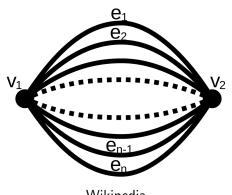




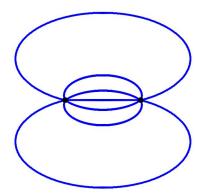
Mathematica Notebook

Dipoles

$$\beta(z) = -\frac{4z^n}{(z^n - 1)^2}$$



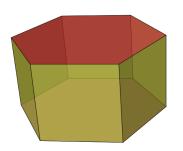
Wikipedia

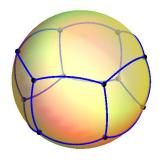


Mathematica Notebook

Prisms

$$\beta(z) = \frac{(z^{2n} + 14z^n + 1)^3}{108 z^n (z^n - 1)^4}$$



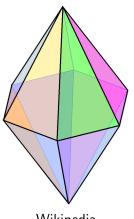


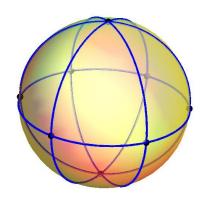
Wikipedia

Mathematica Notebook

Bipyramids

$$\beta(z) = \frac{108z^n(z^n - 1)^4}{(z^{2n} + 14z^n + 1)^3}$$

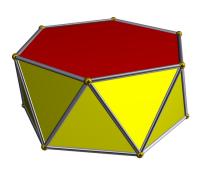




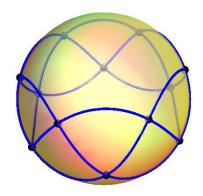
Mathematica Notebook

Antiprisms

$$\beta(z) = \frac{(z^{2n} + 10z^n - 2)^4}{16(z^n - 1)^3(2z^n + 1)^3}$$



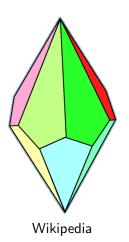
Wikipedia

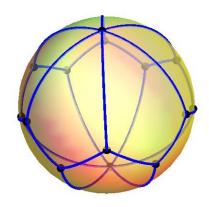


Mathematica Notebook

Trapezohedron

$$\beta(z) = \frac{16(z^n - 1)^3(2z^n + 1)^3}{(z^{2n} + 10z^n - 2)^4}$$

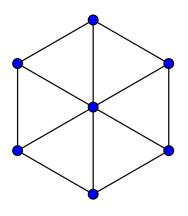




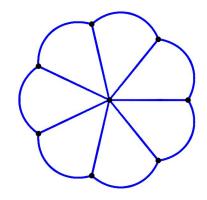
Mathematica Notebook

Wheels

$$\beta(z) = -\frac{64z^n(z^n - 1)^3}{(8z^n + 1)^3}$$



Wikipedia



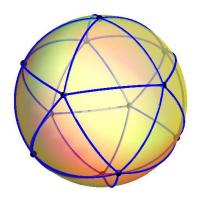
Mathematica Notebook

Gyroelongated Bipyramid

$$\beta(z) = -\frac{1728z^{n}(z^{2n} + 11z^{n} - 1)^{5}}{(z^{4n} - 228z^{3n} + 494z^{2n} + 228z^{n} + 1)^{3}}$$



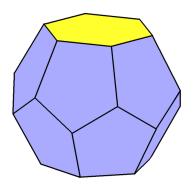
Wikipedia



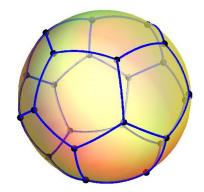
Mathematica Notebook

Truncated Trapezohedron

$$\beta(z) = -\frac{(z^{4n} - 228z^{3n} + 494z^{2n} + 228z^n + 1)^3}{1728z^n(z^{2n} + 11z^n - 1)^5}$$



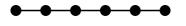
Wikipedia



Mathematica Notebook

Paths

$$\beta(z) = \sin^2(n\cos^{-1}z)$$

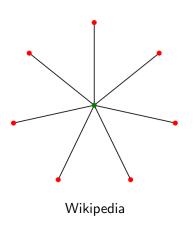


Wikipedia

Mathematica Notebook

Stars

$$\beta(z) = 4z^n(1-z^n)$$



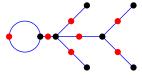
Mathematica Notebook

Further Research

• Find the Belyi maps for the following:

Elongated Pyramid	Gyroelongated Pyramid
Rotunda	Elongated Bipyramid
Truncated Bipyramid	Bicupola
Birotunda	

- Create a Mathematica notebook which will generate Belyi maps for any given tree or web.
- Find a Belyi map for the Stick Figure



Acknowledgements

- The National Science Foundation (NSF) and Professor Steve Bell
- Dr. Joel Spira (Purdue BS '48, Physics)
- Andris "Andy" Zoltners (Purdue MS '69, Mathematics)
- Professor Edray Goins
- Andres Figuerola